设计模式

一,创建型模式

用于描述“怎么创建对象”。它的主要特点是“将对象的创建与使用分离”。如,单例、原型、工厂方法、抽象工厂、建造者等 5 种创建型模式。

  • 单例(Singleton)模式:某个类只能生成一个实例,该实例提供一个全局访问店供外部获取该对象,其扩展时有限多例模式。
  • 原型(Prototype)模式:将一个对象作为原型,通过对其进行复制而克隆出多个和原型类型的新实例。
  • 工厂方法(Factory Method)模式:定义一个用于创建产品的接口,有子类决定生产什么产品。
  • 抽象工厂(Abstract Factory)模式:提供一个创建产品族的接口,其每个子类可以生产一些列相关的产品。
  • 建造者(Builder)模式:将一个复杂对象分解成多个相对简单的部分,然后根据不同需要分别创建它们,最后构建从复杂对象。

1. 单例模式(Singleton)

参考资料:单例模式 | 菜鸟教程 (runoob.com)

  • 确保任何情况下都绝对只有一个实例

  • 想在程序中表现出“只存在一个实例”

1.1 八种方式

加粗为推荐方式

  1. 饿汉式(静态常量)
  2. 饿汉式(静态代码块)
  3. 懒汉式(线程不安全)
  4. 懒汉式(线程安全,同步方法)
  5. 懒汉式(线程安全,同步代码块)
  6. 双重检查
  7. 静态内部类
  8. 枚举

1.1.1 饿汉式(静态常量)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
/**
* 饿汉式(静态常量),可能造成资源浪费
*/
class Singleton01 {
//构造器私有化
private Singleton01() {}

// 静态常量
private static Singleton01 instance = new Singleton01();

public static Singleton01 getInstance() {
return instance;
}
}

优缺点说明:
优点:这种写法比较简单,就是在类装载的时候就完成实例化。避免了线程同步问题。
缺点: 1.在类装载的时候就完成实例化,没有达到 Lazy Loading 的效果。如果从始至终从未使用过这个实例,则
会造成内存的浪费 2.这种方式基于 classloder 机制避免了多线程的同步问题,不过,instance 在类装载时就实例化,在单例模 式中大 3.多数都是调用 getInstance 方法,但是导致类装载的原因有很多种,因此不能确定有其他的方式(或者其 他的静态方法)导致类装载,这时候初始化 instance 就没有达到 lazy loading 的效果
结论:这种单例模式可用,可能造成内存浪费

1.1.2 饿汉式(静态代码块)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/**
* 饿汉式(静态代码块),可能造成资源浪费,优缺点同上
*/
class Singleton01 {
private static Singleton01 instance;

//静态代码块
static {
instance = new Singleton01();
}

private Singleton01() {
}


public static Singleton01 getInstance() {
return instance;
}
}

1.1.3 懒汉式(双重检查)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
/**
* 懒汉式(双重检查),线程安全
*/
class Singleton01 {
/**
* volatile 作用:
* 1. 可见性 可见性是指多个线程访问同一个变量时,其中一个线程修改了该变量的值,其它线程能够立即看到修 * 改的值。
* 2. 原子性 volatile只保证单次读/写操作的原子性,对于多步操作,volatile 不能保证原子性
* 3. 有序性 在 Java内存模型中,允许编译器和处理器对指令进行重排序,重排序过程不会影响到单线程程序的 * 执行,但是会影响到多线程并发执行的正确性。
* volatile关键字可以禁止指令重新排序,可以保证一定的有序性。
* volatile 修饰的变量的有序性有两层含义:
* 所有在 volatile 修饰的变量写操作之前的写操作,将会对随后该 volatile修饰的变量读操作之后的语句可 * 见。
* 禁止 JVM 重排序:volatile 修饰的变量的读写指令不能和其前后的任何指令重排序,其前后的指令可能会被 * 重排序。
*/

private static volatile Singleton01 instance;


private Singleton01() {
}

//提供一个静态的公有方法,加入双重检查代码,解决线程安全问题,同时解决懒加载问题。
public static Singleton01 getInstance() {
if (instance == null) {
synchronized (Singleton01.class) {
if (instance == null) {
instance = new Singleton01();
}
}
}
return instance;
}
}

优缺点说明:

  1. Double-Check 概念是多线程开发中常使用到的,如代码中所示,我们进行了两次 f(singleton=null)检查,这样就可以保证线程安全了。
  2. 这样,实例化代码只用执行一次,后面再次访问时,判断 if(singleton=nul),直接 return 实例化对象,也避免的反复进行方法同步线程安全;延迟加载;效率较高
  3. 结论:在实际开发中,推荐使用这种单例设计模式

1.1.4 静态内部类

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/**
* 静态内部类,线程安全
*/
class Singleton01 {
private static Singleton01 instance;

private Singleton01() {
}

private static class SingletonInstance{
private static final Singleton01 INSTANCE = new Singleton01();
}

public static Singleton01 getInstance() {
return SingletonInstance.INSTANCE;
}
}
/*
优缺点说明:
这种方式采用了类装载的机制来保证初始化实例时只有一个线程。
2)静态内部类方式在Singleton类被装载时并不会立即实例化,而是在需要实例化时,调用getInstance方法,才
会装载SingletonInstance类,从而完成Singleton的实例化。
3)类的静态属性只会在第一次加载类的时候初始化,所以在这里,JVM帮助我们保证了线程的安全性,在类进行
初始化时,别的线程是无法进入的。
4)优点:避免了线程不安全,利用静态内部类特点实现延迟加载,效率高
5)结论:推荐使用

优缺点说明: 1.这种方式采用了类装载的机制来保证初始化实例时只有一个线程。 2.静态内部类方式在 Singleton 类被装载时并不会立即实例化,而是在需要实例化时,调用 getInstance 方法,才会装载 SingletonInstance 类,从而完成 Singleton 的实例化。 3.类的静态属性只会在第一次加载类的时候初始化,所以在这里,JVM 帮助我们保证了线程的安全性, 在类进行初始化时,别的线程是无法进入的。 4.优点:避免了线程不安全,利用静态内部类特点实现延迟加载,效率高 5.结论:推荐使用

1.1.5 枚举

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/**
* 枚举,线程安全
*/
public class SingletonTest01 {
public static void main(String[] args) {
Singleton instance1 = Singleton.INSTANCE;
Singleton instance2 = Singleton.INSTANCE;
System.out.println(instance1 == instance2);//ture
instance1.sayHi();//"Hi!"
}
}

enum Singleton {
INSTANCE;

public void sayHi() {
System.out.println("Hi!");
}
}


优缺点说明: 1.这借助 JDK1.5 中添加的枚举来实现单例模式。不仅能避免多线程同步问题,而且还能防止反序列化重新创建
新的对象。 2.这种方式是 Effective Java 作者 Josh Bloch 提倡的方式 3.结论:推荐使用

1.2.单例模式注意事项和细节说明

  1. 单例模式保证了系统内存中该类只存在一个对象,节省了系统资源,对于一些需要频繁创建销毁的对象,使
    用单例模式可以提高系统性能
  2. 当想实例化一个单例类的时候,必须要记住使用相应的获取对象的方法,而不是使用 new
  3. 单例模式使用的场景:需要频繁的进行创建和销毁的对象、创建对象时耗时过多或耗费资源过多(即:重量级
    对象),但又经常用到的对象、工具类对象、频繁访问数据库或文件的对象(比如数据源、session 工厂等)

2. 工厂模式(Factory Pattern)

参考资料:工厂模式 | 菜鸟教程 (runoob.com)

定义一个创建对象的接口,让其子类自己决定实例化哪一个工厂类,工厂模式使其创建过程延迟到子类进行。

2.1 结构

工厂方法模式的主要角色:

  • 抽象工厂(Abstract Factory):提供了创建产品的接口,调用者通过它访问具体工厂的工厂方法来创建产品。
  • 具体工厂(ConcreteFactory):主要是实现抽象工厂中的抽象方法,完成具体产品的创建。
  • 抽象产品(Product):定义了产品的规范,描述了产品的主要特性和功能。
  • 具体产品(ConcreteProduct):实现了抽象产品角色所定义的接口,由具体工厂来创建,它同具体工厂之间一一对应。

2.2 实现

我们将创建一个 Shape 接口和实现 Shape 接口的实体类。下一步是定义工厂类 _ShapeFactory_。

FactoryPatternDemo 类使用 ShapeFactory 来获取 Shape 对象。它将向 ShapeFactory 传递信息(_CIRCLE / RECTANGLE / SQUARE_),以便获取它所需对象的类型。

工厂模式的 UML 图

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
//Shape接口
public interface Shape {
void draw();
}

//实体类
public class Rectangle implements Shape {
@Override
public void draw() {
System.out.println("Inside Rectangle::draw() method.");
}
}

public class Square implements Shape {
@Override
public void draw() {
System.out.println("Inside Square::draw() method.");
}
}

public class Circle implements Shape {
@Override
public void draw() {
System.out.println("Inside Circle::draw() method.");
}
}

//创建一个工厂,根据类型创建响应的形状
public class ShapeFactory {
//使用 getShape 方法获取形状类型的对象
public Shape getShape(String shapeType){
if(shapeType == null){
return null;
}
if(shapeType.equalsIgnoreCase("CIRCLE")){
return new Circle();
} else if(shapeType.equalsIgnoreCase("RECTANGLE")){
return new Rectangle();
} else if(shapeType.equalsIgnoreCase("SQUARE")){
return new Square();
}
return null;
}
}

//测试类
public class FactoryPatternDemo {

public static void main(String[] args) {
ShapeFactory shapeFactory = new ShapeFactory();

//获取 Circle 的对象,并调用它的 draw 方法
Shape shape1 = shapeFactory.getShape("CIRCLE");

//调用 Circle 的 draw 方法
shape1.draw(); //Inside Circle::draw() method.

//获取 Rectangle 的对象,并调用它的 draw 方法
Shape shape2 = shapeFactory.getShape("RECTANGLE");

//调用 Rectangle 的 draw 方法
shape2.draw(); //Inside Rectangle::draw() method.

//获取 Square 的对象,并调用它的 draw 方法
Shape shape3 = shapeFactory.getShape("SQUARE");

//调用 Square 的 draw 方法
shape3.draw(); //Inside Square::draw() method.
}
}

2.3 优缺点

优点:

  • 用户只需要知道具体工厂的名称就可得到所要的产品,无须知道产品的具体创建过程;
  • 在系统增加新的产品时只需要添加具体产品类和对应的具体工厂类,无须对原工厂进行任何修改,满足开闭原则;

缺点:

  • 每增加一个产品就要增加一个具体产品类和一个对应的具体工厂类,这增加了系统的复杂度。

3. 抽象工厂模式(Abstract Factory)

参考资料:抽象工厂模式 | 菜鸟教程 (runoob.com)

抽象工厂模式(Abstract Factory Pattern)是围绕一个超级工厂创建其他工厂。该超级工厂又称为其他工厂的工厂。这种类型的设计模式属于创建型模式,它提供了一种创建对象的最佳方式。

在抽象工厂模式中,接口是负责创建一个相关对象的工厂,不需要显式指定它们的类。每个生成的工厂都能按照工厂模式提供对象。

使用场景: 1、QQ 换皮肤,一整套一起换。 2、生成不同操作系统的程序。

3.1 结构

抽象工厂模式的主要角色如下:

  • 抽象工厂(Abstract Factory):提供了创建产品的接口,它包含多个创建产品的方法,可以创建多个不同等级的产品。

  • 具体工厂(Concrete Factory):主要是实现抽象工厂中的多个抽象方法,完成具体产品的创建。

  • 抽象产品(Product):定义了产品的规范,描述了产品的主要特性和功能,抽象工厂模式有多个抽象产品。

  • 具体产品(ConcreteProduct):实现了抽象产品角色所定义的接口,由具体工厂来创建,它同具体工厂之间是多对一的关系。

image-20220428220559295

4. 原型模式(Prototype Pattern)

参考资料:原型模式 | 菜鸟教程 (runoob.com)

原型模式(Prototype Pattern)是用于创建重复的对象,同时又能保证性能。这种类型的设计模式属于创建型模式,它提供了一种创建对象的最佳方式。

这种模式是实现了一个原型接口,该接口用于创建当前对象的克隆。当直接创建对象的代价比较大时,则采用这种模式。例如,一个对象需要在一个高代价的数据库操作之后被创建。我们可以缓存该对象,在下一个请求时返回它的克隆,在需要的时候更新数据库,以此来减少数据库调用。

原型模式的克隆分为浅克隆和深克隆:

浅克隆:创建一个新对象,新对象的属性和原来对象完全相同,对于非基本类型属性,仍指向原有属性所指向的对象的内存地址。
深克隆:创建一个新对象,属性中引用的其他对象也会被克隆,不再指向原有对象地址。

4.1 结构:

原型模式包含如下角色:

  • 抽象原型类:规定了具体原型对象必须实现的的 clone() 方法。
  • 具体原型类:实现抽象原型类的 clone() 方法,它是可被复制的对象。
  • 访问类:使用具体原型类中的 clone() 方法来复制新的对象。

接口类图如下:

4.2 浅克隆

4.2.1 案例:

用原型模式生成“三好学生”奖状

同一学校的“三好学生”奖状除了获奖人姓名不同,其他都相同,可以使用原型模式复制多个“三好学生”奖状出来,然后在修改奖状上的名字即可。

类图如下:

代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
//奖状类
public class Citation implements Cloneable {
private String name;

public void setName(String name) {
this.name = name;
}

public String getName() {
return (this.name);
}

public void show() {
System.out.println(name + "同学:在2020学年第一学期中表现优秀,被评为三好学生。特发此状!");
}

@Override
public Citation clone() throws CloneNotSupportedException {
return (Citation) super.clone();
}
}

//测试访问类
public class CitationTest {
public static void main(String[] args) throws CloneNotSupportedException {
Citation c1 = new Citation();
c1.setName("张三");

//复制奖状
Citation c2 = c1.clone();
//将奖状的名字修改李四
c2.setName("李四");

c1.show();//张三。。。。。
c2.show();//李四。。。。。
}
}

4.2.2 使用场景

  • 对象的创建非常复杂,可以使用原型模式快捷的创建对象。
  • 性能和安全要求比较高。

4.3 深克隆

将上面的“三好学生”奖状的案例中 Citation 类的 name 属性修改为 Student 类型的属性。代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
//奖状类
public class Citation implements Cloneable {
private Student stu;

public Student getStu() {
return stu;
}

public void setStu(Student stu) {
this.stu = stu;
}

void show() {
System.out.println(stu.getName() + "同学:在2020学年第一学期中表现优秀,被评为三好学生。特发此状!");
}

@Override
public Citation clone() throws CloneNotSupportedException {
return (Citation) super.clone();
}
}

//学生类
public class Student {
private String name;
private String address;

public Student(String name, String address) {
this.name = name;
this.address = address;
}

public Student() {
}

public String getName() {
return name;
}

public void setName(String name) {
this.name = name;
}

public String getAddress() {
return address;
}

public void setAddress(String address) {
this.address = address;
}
}

//测试类
public class CitationTest {
public static void main(String[] args) throws CloneNotSupportedException {

Citation c1 = new Citation();
Student stu = new Student("张三", "西安");
c1.setStu(stu);

//复制奖状
Citation c2 = c1.clone();
//获取c2奖状所属学生对象
Student stu1 = c2.getStu();
stu1.setName("李四");

//判断stu对象和stu1对象是否是同一个对象
System.out.println("stu和stu1是同一个对象?" + (stu == stu1));//true

c1.show();
c2.show();
}
}

运行结果为:

说明:

​ stu 对象和 stu1 对象是同一个对象,就会产生将 stu1 对象中 name 属性值改为“李四”,两个 Citation(奖状)对象中显示的都是李四。这就是浅克隆的效果,对具体原型类(Citation)中的引用类型的属性进行引用的复制。这种情况需要使用深克隆,而进行深克隆需要使用对象流。代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
public class CitationTest1 {
public static void main(String[] args) throws Exception {
Citation c1 = new Citation();
Student stu = new Student("张三", "西安");
c1.setStu(stu);

//创建对象输出流对象
ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream("C:\\Users\\Think\\Desktop\\b.txt"));
//将c1对象写出到文件中
oos.writeObject(c1);
oos.close();

//创建对象出入流对象
ObjectInputStream ois = new ObjectInputStream(new FileInputStream("C:\\Users\\Think\\Desktop\\b.txt"));
//读取对象
Citation c2 = (Citation) ois.readObject();
//获取c2奖状所属学生对象
Student stu1 = c2.getStu();
stu1.setName("李四");

//判断stu对象和stu1对象是否是同一个对象
System.out.println("stu和stu1是同一个对象?" + (stu == stu1));

c1.show();
c2.show();
}
}

运行结果为:

注意:Citation 类和 Student 类必须实现 Serializable 接口,否则会抛 NotSerializableException 异常

5. 建造者模式(Builder Pattern)

参考资料:建造者模式 | 菜鸟教程 (runoob.com)

建造者模式(Builder Pattern)使用多个简单的对象一步一步构建成一个复杂的对象。这种类型的设计模式属于创建型模式,它提供了一种创建对象的最佳方式。

一个 Builder 类会一步一步构造最终的对象。该 Builder 类是独立于其他对象的。

5.1 结构

建造者(Builder)模式包含如下角色:

  • 抽象建造者类(Builder):这个接口规定要实现复杂对象的那些部分的创建,并不涉及具体的部件对象的创建。
  • 具体建造者类(ConcreteBuilder):实现 Builder 接口,完成复杂产品的各个部件的具体创建方法。在构造过程完成后,提供产品的实例。
  • 产品类(Product):要创建的复杂对象。
  • 指挥者类(Director):调用具体建造者来创建复杂对象的各个部分,在指导者中不涉及具体产品的信息,只负责保证对象各部分完整创建或按某种顺序创建。

类图如下:

5.2 实例

创建共享单车

生产自行车是一个复杂的过程,它包含了车架,车座等组件的生产。而车架又有碳纤维,铝合金等材质的,车座有橡胶,真皮等材质。对于自行车的生产就可以使用建造者模式。

这里 Bike 是产品,包含车架,车座等组件;Builder 是抽象建造者,MobikeBuilder 和 OfoBuilder 是具体的建造者;Director 是指挥者。类图如下:

具体的代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
//自行车类
public class Bike {
private String frame;
private String seat;

public String getFrame() {
return frame;
}

public void setFrame(String frame) {
this.frame = frame;
}

public String getSeat() {
return seat;
}

public void setSeat(String seat) {
this.seat = seat;
}
}

// 抽象 builder 类
public abstract class Builder {

protected Bike mBike = new Bike();

public abstract void buildFrame();
public abstract void buildSeat();
public abstract Bike createBike();
}

//摩拜单车Builder类
public class MobikeBuilder extends Builder {

@Override
public void buildFrame() {
mBike.setFrame("铝合金车架");
}

@Override
public void buildSeat() {
mBike.setSeat("真皮车座");
}

@Override
public Bike createBike() {
return mBike;
}
}

//ofo单车Builder类
public class OfoBuilder extends Builder {

@Override
public void buildFrame() {
mBike.setFrame("碳纤维车架");
}

@Override
public void buildSeat() {
mBike.setSeat("橡胶车座");
}

@Override
public Bike createBike() {
return mBike;
}
}

//指挥者类
public class Director {
private Builder mBuilder;

public Director(Builder builder) {
mBuilder = builder;
}

public Bike construct() {
mBuilder.buildFrame();
mBuilder.buildSeat();
return mBuilder.createBike();
}
}

//测试类
public class Client {
public static void main(String[] args) {
showBike(new OfoBuilder());
showBike(new MobikeBuilder());
}
private static void showBike(Builder builder) {
Director director = new Director(builder);
Bike bike = director.construct();
System.out.println(bike.getFrame());
System.out.println(bike.getSeat());
}
}
  • 过程可以创建不同的产品对象。
  • 可以更加精细地控制产品的创建过程 。将复杂产品的创建步骤分解在不同的方法中,使得创建过程更加清晰,也更方便使用程序来控制创建过程。
  • 建造者模式很容易进行扩展。如果有新的需求,通过实现一个新的建造者类就可以完成,基本上不用修改之前已经测试通过的代码,因此也就不会对原有功能引入风险。符合开闭原则。

缺点:

造者模式所创建的产品一般具有较多的共同点,其组成部分相似,如果产品之间的差异性很大,则不适合使用建造者模式,因此其使用范围受到一定的限制。

5.3 使用场景

建造者(Builder)模式创建的是复杂对象,其产品的各个部分经常面临着剧烈的变化,但将它们组合在一起的算法却相对稳定,所以它通常在以下场合使用。

  • 创建的对象较复杂,由多个部件构成,各部件面临着复杂的变化,但构件间的建造顺序是稳定的。
  • 创建复杂对象的算法独立于该对象的组成部分以及它们的装配方式,即产品的构建过程和最终的表示是独立的。

5.4 模式扩展

建造者模式除了上面的用途外,在开发中还有一个常用的使用方式,就是当一个类构造器需要传入很多参数时,如果创建这个类的实例,代码可读性会非常差,而且很容易引入错误,此时就可以利用建造者模式进行重构。

重构前代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
public class Phone {
private String cpu;
private String screen;
private String memory;
private String mainboard;

public Phone(String cpu, String screen, String memory, String mainboard) {
this.cpu = cpu;
this.screen = screen;
this.memory = memory;
this.mainboard = mainboard;
}

public String getCpu() {
return cpu;
}

public void setCpu(String cpu) {
this.cpu = cpu;
}

public String getScreen() {
return screen;
}

public void setScreen(String screen) {
this.screen = screen;
}

public String getMemory() {
return memory;
}

public void setMemory(String memory) {
this.memory = memory;
}

public String getMainboard() {
return mainboard;
}

public void setMainboard(String mainboard) {
this.mainboard = mainboard;
}

@Override
public String toString() {
return "Phone{" +
"cpu='" + cpu + '\'' +
", screen='" + screen + '\'' +
", memory='" + memory + '\'' +
", mainboard='" + mainboard + '\'' +
'}';
}
}

public class Client {
public static void main(String[] args) {
//构建Phone对象
Phone phone = new Phone("intel","三星屏幕","金士顿","华硕");
System.out.println(phone);
}
}

上面在客户端代码中构建 Phone 对象,传递了四个参数,如果参数更多呢?代码的可读性及使用的成本就是比较高。

重构后代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
public class Phone {

private String cpu;
private String screen;
private String memory;
private String mainboard;

private Phone(Builder builder) {
cpu = builder.cpu;
screen = builder.screen;
memory = builder.memory;
mainboard = builder.mainboard;
}

public static final class Builder {
private String cpu;
private String screen;
private String memory;
private String mainboard;

public Builder() {}

public Builder cpu(String val) {
cpu = val;
return this;
}
public Builder screen(String val) {
screen = val;
return this;
}
public Builder memory(String val) {
memory = val;
return this;
}
public Builder mainboard(String val) {
mainboard = val;
return this;
}
public Phone build() {
return new Phone(this);}
}
@Override
public String toString() {
return "Phone{" +
"cpu='" + cpu + '\'' +
", screen='" + screen + '\'' +
", memory='" + memory + '\'' +
", mainboard='" + mainboard + '\'' +
'}';
}
}

public class Client {
public static void main(String[] args) {
Phone phone = new Phone.Builder()
.cpu("intel")
.mainboard("华硕")
.memory("金士顿")
.screen("三星")
.build();
System.out.println(phone);
}
}

重构后的代码在使用起来更方便,某种程度上也可以提高开发效率。从软件设计上,对程序员的要求比较高。

6 创建者模式对比

工厂模式 – >去饭店

建造者模式 – >自己做菜

6.1 工厂方法模式 VS 建造者模式

工厂方法模式注重的是整体对象的创建方式;而建造者模式注重的是部件构建的过程,意在通过一步一步地精确构造创建出一个复杂的对象。

我们举个简单例子来说明两者的差异,如要制造一个超人,如果使用工厂方法模式,直接产生出来的就是一个力大无穷、能够飞翔、内裤外穿的超人;而如果使用建造者模式,则需要组装手、头、脚、躯干等部分,然后再把内裤外穿,于是一个超人就诞生了。

6.2 抽象工厂模式 VS 建造者模式

抽象工厂模式实现对产品家族的创建,一个产品家族是这样的一系列产品:具有不同分类维度的产品组合,采用抽象工厂模式则是不需要关心构建过程,只关心什么产品由什么工厂生产即可。

建造者模式则是要求按照指定的蓝图建造产品,它的主要目的是通过组装零配件而产生一个新产品。

如果将抽象工厂模式看成汽车配件生产工厂,生产一个产品族的产品,那么建造者模式就是一个汽车组装工厂,通过对部件的组装可以返回一辆完整的汽车。